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I. Overview

The concepts of protein folding span biology, phys-
ics, and chemistry and have applications to biomedi-
cine and biomaterials. Since proteins are the direct
products of genes, folding is fundamental to the
expression of genetic information in the cell. Folding
is also of fundamental physical interest, since it
involves spontaneous ordering at the molecular scale.
With few exceptions, proteins fold reversibly to
unique structures. The three-dimensional folded
structure of a protein is encoded in its sequence of
amino acids. Thus, it may eventually be possible to
predict structure from sequence alone and to design
desired folded structures through careful choice of
sequence. Important goals in the field include deter-
mining structure from gene sequence, re-engineering
existing proteins, and crafting new ones de novo.
Using synthetic sequences, features important in
protein stability and folding kinetics may be probed
via selective mutations. Once particular structures
can successfully designed, the opportunity then exists
for the design of novel functional proteins. Poten-
tially, these ideas can be expanded beyond the
naturally occurring biopolymers. Folding polymers,
both biological and synthetic, could yield new types
of structures and properties and lead to novel phar-
maceuticals, catalysts, and materials.

A predictive understanding of molecular folding is
obscured by the complexity of proteins. The hallmark
of folding is the ability of an amino acid sequence to
reversibly acquire a well-defined, unique structure
in a moderate amount of time even though an
exponentially large number are possible. Another

level of complexity concerns the uncertainty with
which the forces that guide folding are quantitatively
understood. The stabilizing interactions within a
folded or partially ordered structure are some of the
most controversial and difficult to treat theoretically
and include hydrogren bonding, hydrophobic effects,
and electrostatic interactions. How a protein finds its
folded state in a reasonable amount of time is also
another central question of protein folding. Clearly,
not all conformations can be searched.1 Attempts to
design sequences that fold to particular structures,
often called inverse folding, stand to inform these
issues as well as lead to novel proteins. However, the
design process opens up still another level of com-
plexity. The number of possible protein sequences for
a given target structure is exponentially dependent
on the number of residues. There are numerous
examples in nature of a small but diverse set of
sequences that fold to similar structures. Discerning
the properties and identities of those sequences that
fold to a predetermined structure is one of the core
goals of protein design.
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The energy landscape view of protein folding is an
attempt to unravel these various levels of complexity.
This approach takes into account the energetics of a
protein’s conformational space in a reductionistic
manner. Energy landscape ideas have led to advances
in understanding protein stability, folding kinetics,
energy function determination, and structure predic-
tion.2 In particular, energy landscape ideas have been
honed via comparisons with simplified models of
proteins where extensive characterization of a model
protein’s conformational space is possible.3-8

Here I discuss how energy landscape ideas and
simple models can inform efforts in protein design.
There have been many recent excellent reviews
concerning the energy landscape theory,2,9,10 simpli-
fied models of proteins,11,12 and theoretical aspects
of protein design.13,14 Herein I will discuss some of
the general issues involved in protein design and
recent developments in the area over the past few
years. It will be shown that the field continues to
progress and in many cases makes direct contact with
particular proteins and protein design experiments.
I begin with a brief review of the energy landscape
theory of protein folding in section II and then discuss
the nature of some of the simplified models of
proteins in section III. Two broad classes of methods
are available to identify sequences that may be
compatible with a particular folded state structure.
One general approach involves searching for optimal
sequences in a directed fashion so as to optimize
sequence-structure compatibility, wherein sequences
are explicitly generated and sampled. This and many
of the important considerations in protein design are
discussed in section IV. The second general approach
involves indentifying the features of sequences shar-
ing common properties in a statistical fashion. I
review recent progress in this area in section V.

II. Energy Landscape Theory of Protein Folding

In the energy landscape picture, protein folding
may be viewed as a collective, cooperative proc-
ess.9,15-18 The focus is on the global nature of a
protein’s free energy surface. Such a picture empha-
sizes those general characteristics that proteins in a
structural class may share as well as which proper-
ties are specific to particular proteins. In such an
approach, information about the energetics of the
unfolded as well as folded states must be accounted
for. This is an obvious consideration since the protein
must recognize and acquire one conformation when
a huge number are possible. Although much has been
learned about the energetics and features of unfolded
states from detailed, atom-based simulations,19-21

these types of calculations are computationally time-
consuming. Given the likely complexity of a protein’s
conformational free energy surface, the energy land-
scape picture focuses on developing concepts that
simplify the description of such a complicated process
as protein folding. Oftentimes studying simplified
models of proteins, which can be extensively if not
completely characterized, can be useful in this regard.
A prime goal of energy landscape approaches is to
identify a handful of thermodynamic and other

simplifying quantities that characterize protein fold-
ing through their description of both the folded state
and the partially folded ensemble of conformational
states.

From a global perspective, the energy landscape
theory provides a useful picture within which to
discuss folding kinetics and thermodynamics. In this
picture, the conformational energy surface of a
protein is characterized in a statistical sense rather
than painstakingly accounting for all intramolecular
interactions. By “energies” here, what is meant is the
free energy of a particular backbone conformation
obtained after averaging over the solvent degrees of
freedom. Such an “energy” could also be obtained
from an effective potential that does not explicitly
include solvent, such as one inferred from the protein
structure database.22 The discussion of energy and
entropy then refer only to the polymer chain’s degrees
of freedom. One key perspective of the landscape
approach is the recognition of the partially random
nature of protein sequences.15,23 Although there are
exceptions,24 by most tests protein sequences appear
random. For arbitrary collapsed structures of the
protein chain, incommensurate parts of the chain are
likely to be in contact with one another, e.g. hydro-
phobic residues next to hydrophilic ones, leading to
frustration. Frustration refers to the inability of all
energetic interactions within the protein to be simul-
taneously satisfied. For most conformations, the
covalent connectivity of the protein backbone pre-
vents all the interactions between residues from
being favorable. Because of this frustration, the
energy surface of a random heteropolymer is rough.
Small changes in conformation may lead to large
changes in energy. In addition to a global minimum
corresponding to the folded state, the surface has
many additional local minima corresponding to par-
tially misfolded states. When the thermal energy is
much less than the typical contact energy, the protein
can become trapped in these local minima. The
roughness of the energy landscape leads to a glass
transition at low temperature, wherein the protein
can become trapped in these low-energy, non-native
conformations.2,25 As the temperature is lowered, the
folding dynamics become increasingly sluggish and
search through the minima of the landscape becomes
difficult. To surmount this difficulty, quickly foldable
proteins have an additional property that guides
them through this multiple minima, conformational
search problem: their sequences satisfy “the principle
of minimal frustration”15 or perhaps more precisely
their sequences “sufficiently minimize frustration”.
This notion, which builds upon previous ideas in
folding,26 implies that the energy of the protein
decreases more than would be expected for a random
sequence as the conformations it assumes become
progressively more similar to the native structure
(the ground state). Energetic biases in the conforma-
tional energy landscape guide the protein toward the
native state (see Figure 1). The biased, rough energy
landscape picture has been applied to describe both
experiments at a qualitative level and minimalist
models of protein folding in a quantitative fash-
ion.2,12,27,28
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In the energy lanscape perspective, the assumption
is that nature has selected for sufficiently nonfrus-
trated sequences over the course of evolution. Pre-
sumably, overly frustrated sequences do not fold and
hence are not viable since they are likely to adversely
affect the livelihood of an organism. Nature need not
have found, however, optimal sequences. There are
many examples where naturally occurring proteins
can be made more stable in the laboratory through
mutagenesis.29,30 In the context of protein design,
however, the degree of frustration is ostensibly at the
control of the researcher since it is straightforward
to synthesize any arbitrary sequence. Designing the
energy landscape of a protein involves determining
sequences whose energetic features are characterized
for both the folded state and the ensemble of non-
folded structures. Including information about both
stabilizing the folded (target) state and destabilizing
unfolded (nontarget) states is often referred to as
“negative design”.31 Indentifying practical quantities
that characterize the conformational energy land-
scape for something as complex as a protein is
nontrivial, but the energy landscape theory provides
a framework for identifying such quantities, which
will be discussed in section IV.D.

While energy landscape ideas have been used for
structure prediction and for understanding folding
kinetics,2 the issue of protein design has some
simplifying features relative to these other “folding
problems”. During folding (and structure prediction),
amino acids are displaced so as to form favorable
interactions in a collapsed structure. This must be
done while maintaining the covalent connectivity of

the backbone. There is a strong correlation between
the locations of amino acid residues nearby in se-
quence. It is the frustration introduced by this
covalent connectivity that motivates the use of par-
tially random models developed for other frustrated
model systems. On the other hand, in protein design,
amino acids may be moved independently of one
another so as to form a low-energy structure. The
placement of amino acids is at the discretion of the
researcher. This independence between amino acids
simplifies the problem, but difficulties remain. In
addition to addressing the energetics of a protein’s
conformational space, an exponentially large number
of protein sequences is possible. For example, if all
20 amino acids are permitted at each position in an
N-residue protein, 20N sequences are possible. The
difficulty comes in selecting suitable sequences from
this large ensemble of possibilities. Computational
algorithms are being developed to address this prob-
lem, while simplifying models can provide useful
insight.

III. Atomistic and Minimal Models
A number of de novo designed proteins have been

successfully created in the past few years, including
proteins that mimic zinc fingers,32 a novel right-
handed coiled coil,33 a helical dimer,34 and a three-
stranded â sheet.35 Larger proteins (more than 50
residues) are more challenging targets. Nonetheless,
several such proteins have been recently designed de
novo, most commonly as helical bundles.36-38 How-
ever, often such attempts yield proteins having
substantial secondary structure but few well-defined
tertiary interactions.39 A variety of noncovalent in-
teractions must be engineered. Such interactions
include van der Waals forces, hydrogen bonds, comple-
mentary electrostatics, and hydrophobic interactions.
The subtlety of these forces has frustrated many
attempts to design particular structures. While struc-
tures with substantial symmetry such as coiled coils
and helical bundles may now be successfully de-
signed,40 the complexity of proteins suggests that
computational algorithms will be necessary to design
structures as complex as those observed in nature,
which need not possess any simplifying symmetry.

In addition to these experimental efforts, a number
of important advances in algorithms and theories
related to protein folding and design have been
developed. These methods can be considered in the
context of sequence-structure compatibility and can
be loosely classified into two types: (a) those that
consider the protein in nearly atomistic detail and
(b) those that use reduced descriptions of the amino
acids and backbone. Since the goal of these methods
is to determine sequences that fold to a predeter-
mined structure, the main chain of the protein is kept
fixed or allowed to fluctuate only slightly. For a given
target structure, nearly all sequence design algo-
rithms vary sequence so as to optimize a given
foldability criterion. Given the enormous number of
possible sequences, methods of sequence design must
search sequence space in a directed manner that does
not consider every possible sequence or set of side-
chain conformations.

Figure 1. Schematic representations of the conformational
energy landscape for a sequence that folds to a particular
native state. (a) The “folding funnel” provides a quantita-
tive rendering of the energy landscape. The surface is
rugged with many local minima but has an overall bias
toward the folded state. The width of the funnel indicates
the conformational entropy.8,179 (b) The distribution of
conformational energy states for low-energy compact struc-
tures. The stability gap ∆ ) Ef - 〈E〉u, where Ef is the
energy in the folded (target) structure and 〈E〉u is an
average energy over compact conformations. The variation
in energy, the ruggedness, is quantified by the variance of
the energy over compact, unfolded structures Γ2 ) 〈E2〉u -
〈E〉u

2.64 (c) The energy level diagram represents particular
conformational states that are close in energy to the folded
state. Note that the distribution in energy levels is es-
sentially continuous above a certain threshold in the
energy. ∆01 is the difference in energy between the folded
state and the next highest distinct compact conformer.61
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Atomistic algorithms treat each protein sequence
in molecular detail. These methods are discussed in
several recent reviews.40-43 The energy, as calculated
using an atom-based molecular potential, is mini-
mized by varying sequence and side-chain confor-
mation.44-47 In some algorithms, the free volume
within the target structure is minimized.48 In several
cases, these methods have performed remarkably
well in designing small proteins or those with limited
sequence variability.32,33,49,50 In dealing with the large
number of possible sequences and side-chain confor-
mations, sampling and pruning methods are often
used. Sampling methods, which include genetic al-
gorithms47 or simulated annealing,45,48 perform a
partially random, directed search for sequences that
minimize the energy or some other function that
scores sequence-structure compatibility. Pruning
methods such as “dead end elimination”51-53 elimi-
nate monomer types that cannot occur in the global
optimum. For certain types of potential, pruning
methods determine the global minimum. The com-
putational demands of such techniques, which in-
volve enormous numbers of degrees of freedom, limit
the size and number of the sequences that may be
considered in the search for those that optimize
interresidue interactions.54 Furthermore, the enor-
mous number of degrees of freedom involved in these
calculations impedes the consideration of alternate
structures of the protein. Such atomistic methods
cannot directly take into account the global features
of a protein’s energy surface. To explicitly include
information about nontarget conformations is com-
putationally prohibitive for such detailed descriptions
of proteins. As a result, information about nontarget
or unfolded states is included in an approximate
manner, e.g., by including penalty terms for exposing
hydrophobic surfaces.55,56

Alternatively, many researchers have examined
the search for viable protein sequences using simpli-
fied models or simplified descriptions of real proteins.
The goal with developing such models is to provide
tractable representations of proteins that recover
much of their important phenomenology. As such,
these models have fewer degrees of freedom than
more realistic representations of proteins. Much
larger variation in sequence and in backbone confor-
mation is possible. Side chains are replaced by
effective atoms or are not represented at all. The
complexity of the main chain peptide backbone is
replaced with effective bonds between effective resi-
dues. In some cases, such models are simplified
renderings of particular structures. A commonly used
model type in this case are the so-called “off-lattice”
models, where “off-lattice” simply implies that the
coordinates that specify conformation are continu-
ously valued.6,57 These models are typically a chain
of connected beads, where the beads represent the
residue positions. A further simplification is to re-
strict the locations of the residues to the sites of a
two- or three-dimensional lattice. This further reduc-
tion in conformational complexity permits much more
extensive or in some cases complete sampling of
conformations. Interestingly, realistic models of pro-
teins are possible using high-dimensional or carefully

chosen underlying lattices.58-60 Smaller models such
as the two-dimensional square lattice model and
especially the three-dimensional 27-mer cubic lattice
model are more commonly studied since it is possible
to obtain extensive sampling of their energy land-
scapes.11,13 Via Monte Carlo algorithms, it is also
possible to examine the effective kinetics of folding
in these systems.61,62 Even these simplest explicit
protein models have many of the stability properties
of real proteins when only two amino acids are used
(see Figure 2). Unique structures can be encoded in
sequence that are stable at finite temperatures. The
folding is often cooperative. Moreover, the kinetics
of these lattice models resembles in many ways that
of real proteins: there is a diversity of rates for
different structures and sequences, sequences can be
determined that fold in moderate amounts of time,
and it is possible to identify features of the transition-
state ensemble and other intermediate structures
during folding.12,13 In such models it is energetic
interactions that are responsible for stabilizing a
particular folded state structure. As a result a suit-
able potential or energy function must be chosen (see
also section IV.B). For realistic representations of
protein backbones without explicit side chains, the
most commonly used simplified energy functions are
the “information-based” potentials,22,63-66 which are
inferred from the database of known protein struc-
tures, but with model systems the effects of local
stability can be examined by varying various ener-
getic contributions. Last, the simplified protein mod-
els provide a well-understood “laboratory” within
which algorithms for protein design can be tested.

IV. Elements of Protein Design
Several considerations go into identifying hetero-

polymer sequences that are likely to fold to a pre-
determined structure. Obviously a target structure
is necessary, and such a structure may be readily
obtained from a structural database or as a result of
molecular modeling, but some structures may be
more difficult targets than others. Some indicator of
“foldability” is required to identify sequences that
rapidly fold to a unique, target structure. Since most
foldability measures involve the energies of different
conformations, accurate and tractable energy func-
tions that reproduce the properties of proteins are
also needed. Some means of identifying sequences
having a desired foldability is necessary, but this

Figure 2. Minimalist models of proteins contain many of
the features of real proteins: large numbers of unfolded
conformations; partially ordered states, some of which can
play a role in the transition state ensemble; and a stable,
well-defined folded conformation. (The model shown is that
of Thirumalai and co-workers.6,119)
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search is frustrated in part by the huge number of
possible sequences. Reducing the number of possible
amino acids can simpify the search in computational
protein design, but deciding on a particular subset
of the amino acids is a subtle issue. It is these issues
of structure, energy function, foldability, sequence
search, and amino acid alphabet that are the focus
of this section.

A. Structure
It seems reasonable that backbone structures for

protein design should look something like naturally
occurring proteins. That is, they should be compact,
have no steric conflicts or other “bad” interactions,
and possess some degree of secondary (or more
generally “local”) order. The target structures of most
experimental design efforts are analogues of natu-
rally occurring proteins. Backbone target structures
can be easily obtained from the protein database
directly or from the molecular modeling of such
structures. It may not be possible, however, to find
sequences that fold to any arbitrary compact struc-
ture. Indeed, from the number of new types of
structures that are being determined each year, it
appears that the number of naturally occurring
protein fold families may be finite.67-69 That is,
nature may have used a somewhat limited set of
structures to construct a larger set of functional
proteins. The TIM barrel is one example of a common
protein motif that can fulfill multiple functional-
ities.70 This potential conservation of structures,
however, is not a limitation in the synthetic design
of proteins. In addition to developing methods for
designing naturally observed structures, one of the
challenges for protein design will be to determine
sequences for proteins whose backbone structures are
radically different from those seen in nature.

For any potential target structure, it would be
useful to have prior knowledge of the likely number
of sequences, if any, that fold to that structure.
Structures that support more sequences, so-called
more “designable” structures,71 should be easier
targets for design. Finkelstein and co-workers ad-
dressed the issue of the number of proteins likely to
fold to a particular structure using the simplest
phenomenological model of a rugged energy land-
scape,72 the random energy model (REM).15,73,74 In
such a model, explicit sequences are not considered
and the overall energy distribution of conformational
states is assumed to have a Gaussian form. Even
within this simple model some structures support no
sequences of a sufficiently low energy to fold to that
structure. This group has also argued that commonly
observed structures should be those that are easily
stabilized by random mutations.75 Though informa-
tive, such methods do not lead to specific predictions
about the number of sequences likely to fold to
particular three-dimensional structures.

With regard to general trends for specific kinds of
structure, recently there has been much work on the
connection between symmetry and the degree to
which particular structures may support large num-
bers of sequences. Yue and Dill examined a simple
HP model on 2D and 3D lattices,76 wherein they

searched for structures that only maximize the
number of HH contacts. They found that the struc-
tural degeneracy, the number of structures with the
same number of HH contacts, was lowest for highly
symmetric structures, many of which the authors
classified as the lattice equivalents of R-helical
bundles and R/â-barrels. This suggests that sym-
metric structures should serve as promising design
targets, since such structures have few structural
neighbors energetically. For a specific choice of the
contact energy function for the cubic 27-mer, a
conformation recently highlighted by Li et al. is the
lowest energy conformation for 3794 sequences.71 In
contrast, some conformations are the lowest energy
state of only a few sequences or none at all for both
2D and 3D lattice models. Li et al. noted crude
symmetries in their most designable structures and
suggested that these symmetries may be the reason
some sequences more “designable” than others.71

From a more general perspective, it has been sug-
gested that the symmetries observed in proteins arise
from physical principles analogous to those that guide
clusters of small molecules into symmetric shapes.77,78

Nelson et al. studied an off-lattice (continuum) model
of proteins, for which the folding kinetics and the
susceptibility to mutations was examined.79 Kinetic
optimization, i.e., maximizing the folding rate, was
found to be strongly correlated with ground-state
symmetry, and high-symmetry ground states were
the most robust with respect to mutation. Wang et
al. found that highly designable structures also have
a large degree of symmetry in a two-dimensional
lattice model.80 For a one-body (profile81 or solva-
tion82) energy function, the authors also point out
that highly designable structures are also distant
structurally from nearby structural neighbors. Kus-
sell and Shakhnovich examined an analytically solv-
able model and applied it to a two-dimensional model
of proteins.83 Here the designability of particular
structures is found to be sensitive to energy function.
The results suggest that symmetrical structures are
highly designable. All these studies suggest that
target structures with a large degree of approximate
symmetry should be the native states of a larger
number of sequences and potentially easier to design
than an arbitrary structure without such symmetry.

The issue of designability has also been approached
from other perspectives. Goldstein and co-workers
suggested that structures that have optimal values
of a foldability criterion are also the native structures
of a large number of sequences.84 This notion is born
out in their studies of lattice models of proteins.
Buchler and Goldstein developed a structural meas-
ure based upon similiarity between structures.85 The
authors found that highly designable structures have
a low density of nearby structurally similar confor-
mations. Which particular structures are highly
designable depends on the energy function used.
Using HP-type lattice models, Ejtehadi et al. found
that the designability of particular structures de-
pends on the nature of the energy function.86 They
found a threshold with regard to the nonadditive
contribution to the energy of the most stable contact.
Below this threshold, designable structures are ro-
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bust. Methods for estimating the number of se-
quences likely to fold to a given structure have been
developed87-89 and are discussed in section V.

B. Energy Function

Most foldability criteria are in some sense energy
based. Energy functions are needed that quantita-
tively rank different conformations. These functions
should account for many of the features of folded
structures in an accurate but practical manner.
Atomistic potentials have been developed for use with
proteins and organic molecules.43,90-93 Such potentials
can accurately approximate both covalent and non-
covalent interactions such as van der Waals forces,
hydrogen bonding, and electrostatic interactions.
These potentials are most useful when little is known
about the structural tendencies of a molecule or when
detailed modeling of molecular structures is desired.
Such potentials have proved useful in simulations of
folded proteins,94 side-chain modeling,95 structure
refinement,96 and protein design.43 However, the use
of such potentials in studying foldability and design
is troubled for two reasons. Chain molecules have
large numbers of possible conformations; in many
cases, it is not computationally practical to use
atomistic potentials to simulate unfolded conforma-
tions so as to obtain free energy differences. More
importantly, the accuracy of such potentials for
folding is uncertain. Atomistic potentials are most
often derived from fits to small molecule data, and
such potentials need not recover the folding of large
molecules. Interestingly, however, in recent simula-
tions of small proteins, the chains did acquire con-
formations that had substantial native structure.97,98

While these atomistic potentials are useful for quan-
tifying the packing of residues and side chains, their
use in identifying folded state structures and folding
sequences remains limited.

As a result, other groups have taken an alternative
approach to developing potentials for proteins. These
potentials involve reduced descriptions of the amino
acids, wherein in the side-chain degrees of freedom
are subsumed by a united residue approximation.
Solvent is not treated atomistically but can be ac-
counted for implicitly via pairwise hydrophobic in-
teractions or as a dielectric that modulates electro-
static interactions and may be conformationally
sensitive.99 Although water can be structurally well
determined in crystallographic structures, such detail
is beyond the scope of simpified models. A hierarchi-
cal approach, where atomic detail is included only
for nearly folded structures,100,101 would be necessary
to account for such specific solvent interactions. From
a database of protein structures, empirical potentials
can be developed that recover folding. The simplest
such potential is the so-called Goj model of proteins,
wherein for a given protein with a known folded state
structure, only native interactions between residues
are stabilizing.3,26 Such a potential has been used to
investigate a wide range of folding kinetics25,26,102,103

but has limited applicability to design since it is
specific to one sequence and structure. Another class
of energy functions are statistical potentials, where

the energy of the interactions are related to the
frequencies with which residues appear in protein
environments or with which particular contacts occur
among folded state structures.22,104-106 While there
is some concern about the reliability of such simpli-
fied potentials,107-111 these potentials allow for the
evaluation of large changes in sequence and struc-
ture. Other groups have developed optimized poten-
tials under the assumption that naturally occurring
proteins maximize a stability criterion.64,112-114 Simi-
larly, one group recently proposed a method for
generating potentials for design when the minimum
energy sequence is known.115 Under the optimization
assumption, it is easy to arrive at the optimal energy
function parameters using a suitable training set of
proteins and simple matrix inversion.64 These poten-
tials have been successfully used to predict structure
from sequence,64,116 and it has been shown that
energy functions of this type do an excellent job of
reproducing folding in model systems.117 Recent
attempts at improving optimized energy functions
involve selectively optimizing with respect to low-
energy unfolded structures.116,118

An advantage of examining simple models of
proteins is the fact that the form of the potential is
entirely at the control of the researcher. Potential
parameters may be varied so as to examine the
influence of particular interactions on folding rate
and stability. While bond angle- and torsion angle-
dependent potential terms can be readily included
in most any model, by far the most studied form of
potential consists primarily of pair interactions.

Here the sum is over unique pair interactions, ai and
aj refer to the amino acids at residues i and j, and rij
is the distance between residues i and j. Such a
potential is often used since interactions between
residues distant in sequence play an important role
in stabilizing native structures. For off-lattice models
of folding, uij is typically a continuous function of
rij,6,103,119-123 e.g., a Lennard-Jones potential.119,124

For lattice models, a common form of the potential
is a step function.

In other words, two residues interact with energy ε(ai,
aj) only if their distance from one another is less than
ro and they are not covalently connected. Often for a
lattice model ro is chosen to be the lattice spacing so
that two residues only interact if they are nearest
neighbors on the lattice. Pair interactions are usually
considered to be symmetric, ε(a, a′) ) ε(a′, a). Note
that for such a contact potential, the total energy of
a conformation may also be written as sum over
contacts between different types of residue pair
interactions.

E ) ∑
ij

uij(ai,aj,rij) (1)

uij(ai,aj,rij) ) {ε(ai,aj) if rijero

0 if rij>ro or |i-j|)1 (2)

E ) ∑
ij

u(ai,aj,rij) ) ∑
aa′

ε(a,a′)n(a,a') (3)
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Here the second sum is over unique pair iteractions
between two types of monomer. If only two types of
amino acid are possible, such as an HP model, then
there are three distinct types of interaction: ε(P, P),
ε(H, P), and ε(H, H). For 20 different amino acids,
there are 210 unique pair interactions.

Several different types of potentials merit mention-
ing. In the simple HP potential of Dill and co-
workers, only hydrophobic contacts are stabilizing:
ε(P, P) ) ε(H, P) ) 0 and ε(H, H) < 0.4,76,125 Often-
times the minimum energy conformations of such
models are less than compact.126 Other choices of
energy function make other types of contact stabiliz-
ing so that on average compact structures are pre-
ferred, e.g., ε(P, P) < 0 or ε(H, P) < 0 or both.8,62,127-129

Li et al. made the following choice for the energy
function parameters:71 ε(P, P) ) 0 or ε(H, P) < 0 and
ε(H, H) ) 2.3ε(H, P). For this choice of the energy
function, compact conformations have lower energies
than extended ones. In addition, it satisfies the
inequality εij(H, H) < εij(H, P) < εij(P, P) and the
energy decreases for those sequences that have larger
number of contacts involving H monomers. The
energy function favors H monomers in the interior
of a structure, since interior positions have the
largest coordination numbers. Thus, the energy func-
tion favors placing H monomers on the interior of a
conformation, which conforms with the burial of
hydrophobic residues seen in folded protein struc-
tures. This energy function also satisfies εij(H, H) <
2εij(P, P), which implies that dissimilar monomers
favor segregation within the collapsed globule. Li et
al. mention that their results were not sensitive to
the precise value of εij(H, H), as long as the above
inequalities are satisfied.

For larger numbers of amino acids, more complex
potentials are necessary. Given that there are 210
possible interactions for 20 amino acids, Shakhnovich
and co-workers examined potentials where the en-
ergy parameters uij are random quenched vari-
ables.5,61,130 The Shakhnovich group also pointed out
that there are some cases where design schemes that
fail for a HP model but are valid when larger number
of amino acids are available.131 The most commonly
used contact potentials derived from real proteins are
the potential parameters derived statistically by
Miyazawa and Jernigan.22,106 Other groups have also
developed contact type potentials inferred by opti-
mizing foldability criteria across a training set of
protein structures.64,116

It is also important to note that pair potentials such
as that in eq 1 may not be sufficient for discriminat-
ing native structures in realistic representations of
proteins.132-135 Energy functions involving three-body
and higher order terms may be invoked, but deter-
mining these potentials requires very large data sets.
Nonetheless, even for simple model systems, pair
potentials such as that in eq 1 can yield a rich array
of protein-like thermodynamic and kinetic properties.

C. Search Methods
In the course of design, sequences must be selected

that are compatible with a given target structure.
The space of all possible sequences is exponentially

large; it scales as mN, where m is the number of
monomers (20 if all amino acids are used) and N is
the number of residues in the protein. The fraction
of sequences likely to fold to a particular structure
is an infinitesimal fraction of this number. Thus,
searching for suitable sequences is nontrivial. For
small, specifically defined models, it is sometimes
possible to obtain analytic solutions for the optimal
sequence and other sequence properties.83 One ad-
vantage of very small models, such as two- and three-
dimensional lattice models, is that in many cases it
is possible to explicitly generate all possible se-
quences in the search for those that optimize a
particular foldability function, particulary if the
number of amino acids is small, e.g., m ) 2. For large
models having arbitrary numbers of amino acid
types, however, it is necessary to use numerical
sampling algorithms that search for viable sequences.

Given that the sequence energy landscape may
have local minima as sequences are sampled, par-
tially stochastic methods are often used that can
avoid becoming locally trapped. The appropriate
algorithm to use often depends on the particular
model, the energy function, the way trial sequences
are generated, and the type of information about the
sequence space of a particular protein that is desired.
Monte Carlo methods are some of the most mature
and most commonly employed methods for sequence
searching.45,136 One useful aspect of Monte Carlo
methods is the ability to associate an effective tem-
perature with the search process; this defines the
degree to which sequences having high energy (or
other values of low foldability) are accessible during
the course of the search.137,138 The ensemble proper-
ties of suboptimal sequences can be investigated.
Genetic algorithms have also seen extensive use in
sequence design.47,139 In addtion to yielding specific
sequences, both Monte Carlo and genetic algorithm
methods provide information about an ensemble of
sampled sequences. With slow cooling of the effective
temperature and an arbitrary amount of computer
time, Monte Carlo methods can provide good esti-
mates of global minima (simulated annealing).45,48

Nonetheless, limited computer resources and the fact
that the sequence energy surface may be rugged can
motivate the use of other methods.

Self-consistent mean-field methods are useful for
treating systems having many degrees of freedom.
Theories of this type have been used extensively in
condensed matter physics140,141 and in biomolecular
science for structural studies.142-144 In particular,
mean-field methods have been successfully applied
for side-chain modeling problems with given back-
bone structures.145-150 The effective thermally aver-
aged energy (field) at each site is solved for self-
consistently as the overall energy is lowered. The
method is fast and usually scales as a polynomial in
the number of residues N. A quantitative comparison
of sequence search algorithms confirms the efficiency
of mean-field theory, although for solvable test cases,
the method sometimes fails to find the sequence of
minimum energy.54,151 In addition to identifying low-
energy sequences (or sequence-rotamer combina-
tions), mean-field methods may also be used to
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estimate the probabilities of the amino acids that are
energetically consistent with a particular backbone
structure87-89 (see section V).

A number of recent advances in search methods
are likely to aid sequence searching. Recently, con-
figurational biasing has been introduced into Monte
Carlo sampling of sequences.151 Such methods can
permit faster cooling rates and speed toward low-
energy sequences. Cootes et al. found that such
methods speeded the Monte Carlo search, provided
more accurate estimates of global optima for known
test cases, but were not as fast as mean-field meth-
ods. Foreman et al. developed a new global optimiza-
tion method which works well for rugged energy
surfaces with an overall funnel topology.152 Such
methods may eventually prove useful for protein
design.

Pruning methods such as “dead end elimination”51-53

eliminate monomer types that cannot occur in the
global optimum and can provide a more extensive
search among sequences. For potentials comprising
only site and pair interaction terms, pruning methods
determine the global minimum. Pairs of interactions
between residues are used to eliminate amino acids
(or amino acid conformations) that cannot contribute
to the global minimum. The process is continued until
no further amino acids can be eliminated. If more
than one sequence remains, these few are searched
for the global optimum. The method has been applied
with substantial success to the design of small
proteins32 and residue subsets within proteins.153,154

The method is promising and is undergoing further
refinement.155,156 The method is not without limita-
tions, however. It is restricted to scoring (energy)
functions that involve only one- and two-body inter-
actions. There is increasing evidence that the use of
three-body and higher order terms may be necessary
to recover folding to unique structures.134,157 With the
pruning methods it can be difficult to include global
constraints on sequence such as the numbers of each
amino acid, and calculating the energies of alternate
compact, nontarget conformations is computationally
prohibitive. Since amino acids at many sites are
eliminated, it is difficult to use the method to
examine the properties of ensembles of sequences,
some of which may have less than optimal interac-
tions.

While advances in search methods will surely be
useful, many of these methods are sufficient to
determine viable sequences, particularly for model
systems of proteins. The choice of a particular search
method is not likely to be a problem. Sequence design
methods are more sensitive to the choice of potential,
target structure, and foldability criterion.

Most protein design algorithms place no require-
ments on the properties of transiently generated
sequences during the course of the search for viable
sequences. It it is interesting to note, however, that
such requirements would in some sense mimic evolu-
tion.131 In addition it is useful to characterize the
sequence landscape, i.e., how the folded state energy
and energy landscape features change with sequence.
In studying a small off-lattice model, Nelson and
Onuchic found that different structures have differ-

ent energetic “basins” in sequence space containing
the sequences that fold to those structures.158 They
found that to traverse the landscape from one of
structure to another, i.e., to move between basins, it
was necessary to pass through a “barrier” region in
sequence space comprising sequences without folded
states. Tiana et al. examined the sequence energy
landscape of a 36-mer lattice model with a 20-letter
alphabet.159 They perform Monte Carlo protein design
simulations at different effective selection tempera-
tures. For a target structure, sequence space is
grouped into clusters of low-energy sequences having
large similarity that are mutually accessible via
essentially neutral pair mutations. At higher design
temperatures, the authors interpret their findings in
terms of superclusters; different superclusters have
little sequence similarity and require high-energy
(nonfoldable) mutations to convert from one to an-
other.

D. Foldability Criterion
How might we choose to quantify the foldability of

a particular sequence? The simplest measures of
sequence-structure compatibility are qualitative and
use information learned from known structures.
Sequences have been designed using primarily hy-
drophobic patterning, steric complementarity, and
secondary structure preferences, and these methods
have often been successful.39 For a quantitative
approach, it is useful to have global criteria that
consider the protein and its sequence as a whole,
since folding is a cooperative process.17,160-162 Also,
proteins need not have all their intramolecular
interactions satisfied since many examples exist in
nature of proteins that can be stabilized through
mutagenesis.163 Thus, the stability of proteins need
not be optimal, although there is some evidence that
on average they may be close to being so.164 Quan-
titative measures of sequence-structure compat-
ibility are termed “foldability criteria”. What is meant
by a “good folder?” Generally, this refers to a se-
quence that folds reversibly to a unique structure in
a reasonable amount of time.

Given the importantance of folding kinetics, the
folding rate has been used to select for folding
sequences.121,129,131,165,166 The results of these studies
suggest that nature may indeed select for sequences
with fast folding rates, especially in light of compari-
sons with conserved residues in naturally occurring
proteins.166 Performing such simulations is extremely
computationally intensive, however, since for each
sequence visited the estimated folding rate of that
sequence must be determined via repeated kinetic
simulations. The results of such kinetics studies on
multiple sequences suggest that there is a large
correlation of folding rate with folded state stability.
In particular, the folding rate is correlated with ∆/Γ
(see Figure 1).129,130,167 While there as a been a large
body of work finding that folding rate is strongly
correlated with stability,10 the connection is subtle.
Studying a cubic lattice model having simple “side
chains”, Li et al. identified interactions that do not
appear in the native state but whose stabilization
speeds folding.166 Design of such a protein then could
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include stabilizing nontarget structures (or substruc-
tures) in the unfolded state. A detailed understanding
of the kinetic events in folding would provide an
additional element of control in the design of such
proteins.

Given the computational difficulty of directly as-
sessing the kinetic viability of each trial sequence,
much effort has been put into arriving at design
algorithms from a thermodynamic viewpoint. For
reversible folding, it is generally regarded that the
folded state must be a pronounced free energy
minimum.168 At a desired temperature, the folded
state stability (foldability) is best determined by the
population of the folded state Pf or, equivalently, the
free energy of folding ∆F.

Here Ef is the energy of the folded state and â )
1/(kBT), where kB is Boltzmann’s constant. The parti-
tion function Q involves a sum over all possible
conformational states including the folded state. Here
it has been taken that the folded state is essentially
unique; there is just one folded state structure so that
Qf ) exp(-âEf), where Qf is the partition sum over
the “folded” part of conformational space. Note that
Pf may also be written as

where Keq ) exp(-â∆F) ) Qf/Qu is the equilibrium
constant for folding and Qu is the partition sum for
unfolded conformational states. Thus, mimizing ∆F
(maximizing Keq) with respect to sequence should
yield proteins that are stable in a particular target
structure.

As with many problems in statistical thermody-
namics, it is determining (or approximating) Q or Qu
that is the main hurdle in developing practical,
thermodynamically based foldability criteria. (Note
that most design procedures are performed for a fixed
temperature, â ) constant.)

For small models of proteins, the free energy
difference ∆F can be estimated and used to arrive at
optimal sequences.169 Seno et al. employed a dual
Monte Carlo method to determine sequences having
a high probability of residing in a target structure.169

These authors sampled sequence space, and for each
attempted sequence the free energy of unfolded state
structures was estimated using a Monte Carlo growth
procedure in conformational space, so that low-energy
structures are preferentially sampled. Sequence de-
sign for two-dimensional small lattice models was
performed. This method was extended to previously
studied 48-mers, a set of design targets studied
previously.126 The unfolded partition sum was ap-
proximated as an average over conformations, Qu ∝
〈exp(âE)〉-1.170 With no constraints on the numbers
of each type of monomer, sequences having a range
of compositions, where the number of hydrophobic

residues ranged from 10 to 24, were identified.
Though powerful and accurate, these methods are too
computationally intensive to apply to realistic models
of proteins.

Several foldability criteria have been suggested
that do not involve calculating free energy differ-
ences. From considerations of the features necessary
in a protein’s energy landscape, the notion arises that
fast folding proteins should have large values of Tf/
Tg, where Tg is a glass transition temperature below
which the protein can become trapped in any one of
many low-energy conformations.171 Tf is the folding
temperature; for T < Tf, the folded state is thermo-
dynamically stable. Socci and Onuchic found that
stable, rapid folding does correlate with Tf/Tg in 27-
mer lattice models.62,172 Also from studies of folding
in model proteins, a strong correlation has been found
between the folding rate and (Tθ - Tf)/Tf, where Tθ
and Tf are the collapse and folding temperatures.12,128

It is not clear, however, how to determine sequences
having a predetermined value of either of these ratios
without doing extensive simulations. In particular,
simulations are needed to determine Tθ, Tg, and Tf.
For a simple model such as the random energy model,
it is possible to obtain an analytic expression for Tf
and Tg.173 While these temperatures and their ratios
can provide a fundamental characterization of the
energy landscape of a protein, their use in protein
design is limited.

In eq 6 it is shown that minimizing the energy of
the folded state Ef should have an impact on stability,
if the sequence dependence of the unfolded state
ensemble is neglected, i.e., ln Qu is not dependent on
sequence. In such a context, it is possible to develop
a statistical mechanical theory for protein design. A
Monte Carlo-based search for sequences of low energy
Ef corresponds to sampling sequences at an effective
temperature, which can be understood as a design
Tdes or selection temperature Tsel.137,138 Sequence
design becomes much simpler if only the energetics
within the folded state are of concern. This should
be a valid assumption if all sequences considered
have essentially the same behavior for ln Qu. This
would be expected if the search process sequence is
varied subject to “constant composition”, i.e., the
search considers only sequences having the same
numbers of each amino acid.136 This has been re-
viewed more extensively elsewhere.13,14 For a suf-
ficiently flexible protein where compact states domi-
nate the contribution to ln Qu, this should be a good
assumption since the unfolded ensemble involves an
average over many structures having large numbers
of fluctuating interresidue interactions. This has been
verified by studies of lattice model proteins, where
the free energy of nonfolded states is relatively
invariant for fixed numbers of each monomer type.170

Nonetheless, such an algorithm may fail for some
models where the folded state is less than compact.126

A related approach is molecular “imprinting”, where
separated monomers are annealed around a central
substrate. The amino acids are then polymerized.138

Configurations with stable interactions are selected,
and in cubic lattice models, the sequences so selected
often reversibly fold. The method is less robust,

Pf )
exp(-âEf)

Q
(4)

Pf ) 1
1 + Keq

-1
(5)

â∆F ) âEf - ln Qu (6)
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however, because low-energy interactions between
nearest neighbors along the chain in the disconnected
state are not a factor in the polymer since covalent
connectivity maintains their proximity to one another
for all protein conformations. Guided by results from
the random energy model of proteins, Shakhnovich
and co-workers argued that minimizing the folded
state energy at constant composition actually opti-
mizes a more profound foldability criterion, the
energy gap ∆01 (see Figure 1).61 This is the difference
in energy between the folded state and the next
lowest energy compact conformation. Clearly, for a
sequence to fold to a unique structure, the energy of
the folded state must be removed for of competing
structures. This method of minimizing energy at
constant composition has been used extensively to
design and study lattice models of proteins.28,61,136,174

Studying a 36-mer lattice model, Tiana et al. found
a hierarchy of allowed mutations, where the muta-
tions are ranked according to the change in the
energy of the folded state structure.175 The impact
on folded state stability was found to be directly
related to the energy of the mutation, which affected
primarily the energy of the native state rather than
the energetics of the unfolded ensemble.

A recent lattice study has examined a design
proceedure wherein energy is also minimized but in
an attempt to examine the role of steric effects.
Micheletti et al. developed a model wherein some
“large” (L) monomers where assigned energetic pen-
alties when at interior positions not having vacant
nearest neighbor sites.176 “Small” (S) monomers
where less penalized when at sites of high coordina-
tion. Such a simple LS model exhibited many of the
same features of proteins, including compact struc-
tures being the lowest energy, only a tiny fraction
with a unique ground state, and encodable structures
that are highly designable. The model was applied
to two-dimensional lattice polymers. Though highly
simplified, the model suggests that steric consider-
ations can play a pronounced role in dictating se-
quence. For the 16-mer, nondegenerate ground-state
sequences may be identified using only the target
structure alone, whereas for an HP model, informa-
tion about nonfolded states must be included to
identify encodable structures and viable sequences.
For such an LS model, it is not possible to mount
alternate structures without violating steric con-
straints. This finding is in harmony with the success
of some atomistic design algorithms that seek to
appropriately pack protein cores with side chains.46,47,52

Interestingly, Micheletti et al. found that when
combined with an HP model to yield four types of
monomer, the resulting diversity allows new, less-
compact structures to be encoded.

The constraint of constant composition limits the
sequences that can be used in the course of protein
design. Explicit incorporation of more information
about unfolded states in the design process permits
relaxing constraints on composition. Alternate design
algorithms take into account the energetics of struc-
tures other than the target. Truncated cumulant
expansions provide a useful framework within which
to discuss such criteria.177,178

The unfolded partition sum in eq 6 will be esti-
mated, even in cases where the set of unfolded
conformations is incomplete. In fact, only for simple
model systems may all possible unfolded conforma-
tions be enumerated and ln Qu determined exactly.
More often a subset of nontarget conformations must
be considered. Many have argued that a suitable
subset is that which most closely resembles the set
of compact alternative structures of the protein.
Proteins consist of a large number of hydrophobic
residues, so collapsed conformations are those most
likely to compete with the folded state and to have
the dominant contribution to ln Qu.

The unfolded ensemble partition function can be
written as an average over Ωu unfolded conforma-
tions.

Cumulant expansions may be used to approximate
the average.

Here Γ2 ) 〈E〉u
2 - 〈E2〉u is the variance in the energy

among unfolded compact states (see Figure 1). Note
that this is essentially an expansion in â and is likely
to be most valid at high temperatures where â is
small. ∆F can then be written as

where ∆ ) Ef - 〈E〉u. Usually in the process of protein
design, sequences having the same length and simi-
lar physical chemical properties are compared. As a
result, the term ln Ωu is identical for all potential
sequences and need not be considered in determining
those compatible with a particular target structure.
A foldability criterion can then be defined, Ψ.

If just the first-order term in â in eq 11 is kept,
then at constant temperature the foldability criterion
is Ψ ≈ â∆, where ∆ is the so-called “stability gap”
(see Figure 1).179 This energy difference ∆ between
the target state and an ensemble of nonfolded states
has been suggested as a potential foldability cri-
terion.177 An appealing feature of this and more
advanced folding criteria is that the assumption of
constant composition can be relaxed, and hence, a
much wider range of sequences can be considered in
the design process. Using a 3D 27-mer model, Zou
and Saven showed that the number of sequences is
dramatically increased if ∆ is used to classify se-
quences and that in the absence of constrained
composition there is little correlation between Ef and
∆. Rossi et al. go beyond a simple pair potential and

∑
i

Ωu

e-âEi ) Ωu( 1

Ωu
∑

i

Ωu

e-âEi) ) Ωu〈e-âEi〉u (7)

ln〈e-âEi〉u ) -â〈E〉u + 1
2

â2(〈E〉u
2-〈E2〉u) + ... (8)

) -â〈E〉u + 1
2

â2Γ2 + ... (9)

â∆F ) -ln Ωu + â∆ + 1
2

â2Γ2 + ... (10)

Ψ ) â∆ + 1
2

â2Γ2 + ... (11)
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include three-body interactions in a design approach
using three types of amino acids180 to describe an off-
lattice model of proteins. The stability gap ∆ ) Ef -
〈E〉u is minimized in designing sequences and is also
evaluated for several different effective selection
temperatures. For the structures of several proteins
(thioredoxin, CI2, and barnase), correlation between
conserved residues among naturally occurring se-
quences and those residues whose identity is speci-
fied in the calculation even at high selection temper-
atures is observed.

A shortcoming of using ∆ as a foldability criterion
is that it characterizes the unfolded part of the energy
landscape in a very crude way by only accounting for
the mean 〈E〉u. It would be useful to have more
information about the distribution of unfolded state
energies for each sequence. A simple measure of the
width of the energetic distribution of unfolded states
is the variance Γ2. The cumulant expansion in eq 11
truncated at second order is a natural way to include
this information. Morrissey and Shakhnovich used
similar cumulant expansions in the search for se-
quences that are stable at a desired temperature.178

Another foldability criterion that has received
considerable attention is ∆/Γ.64,181,182 For the REM
model of the protein energy landscape, it may be
shown that minimizing ∆/Γ is a direct result of max-
imizing Tf/Tg.171 It is straightforward to show that
minimizing â∆ + 1/2â2Γ2 is equivalent to minimizing
∆/Γ in the context of a contact energy function (see
eq 3). Since the energy can be written as a sum over
distinct types of contact interaction E ) ∑aa′ua,a′naa′,
then

where the vector A has elements given Aaa′ ) naa′
f -

〈naa′〉u and the matrix B̂ has elements Baa′,bb′ )
〈naa′nbb′〉u - 〈naa′〉u〈nbb′〉u. Recall that typically there is
a discrete set of amino acid types, but if the elements
of the vector u are treated as being continuously
valued, then it is easy to determine the minimum.
The value of this set that minimizes Ψ2(0) is

This is exactly the solution obtained for minimizing
∆/Γ for a particular structure. In fact, these ideas are
essentially identical to one method for determining
energy functions from a training set of proteins.64

Energy function determination and protein design
are in some sense parallel problems. In developing
effective energy functions, typically a fixed set of
sequences is used to solve for effective energy pa-
rameters, where as in protein design it is the energy
function that is fixed so as to identify a suitable
sequence. There is usually a finite set of possible
amino acids, however, so that protein design is a

discrete problem, whereas the parameters of an
energy function may be continuously varied. From
an analysis of the random energy model, Buchler and
Goldstein showed a significant positive correlation
of the energy gap ∆01 with ∆/Γ.85 These results are
also in good agreement with lattice studies. Abkevich
et al. used ∆/Γ as the basis for a sequence design
algorithm in a Monte Carlo search for sequences
having low values of this ratio.181 Optimal sequences
have values of ∆/Γ that are large in magnitude and
less than zero. Abkevich et al. go on to make the more
specific statement that fast folding sequences have
an additional feature that reduces their ruggedness;
these sequences have a low energetic dispersion in
their individual native contact energies. Three sepa-
rate lattice model studies have found that ∆/Γ cor-
relates well with the folding rate and stability;129,130,167

however, the most rapid folders need not have the
lowest value of ∆/Γ.166

∆/Γ is often referred to as the “Z-score”, borrowing
notation from statistics where “z” is sometimes used
to denote the separation from the mean of a particu-
lar sampled value as measured in units of the
standard deviation. However, the term “Z-score” has
also been used to denote a similar quantity, where
the averaging is instead done over different se-
quences for a fixed structure81 rather than different
conformations for fixed sequence. In fact, Street et
al. used this latter “sequence scrambling” definition
of the Z-score to design mutants at the surface of a
â-sheet protein with an all atom model.154

∆/Γ results from a simple picture of the protein
energy landscape. As mentioned, it may also be
viewed as the result of a high-temperature expansion.
More sophisticated criteria are likely to be needed
to further characterize the relevant parts of the
energy landscape, particularly the low-energy un-
folded states that are populated at low temperatures.
As a result, there have been a number of recent
efforts to determine new algorithms for protein
design.

In an attempt to further surmount the difficulty
with estimating the free energy of unfolded states,
Seno et al. developed a variational approach to
protein design.183 The unfolded free energy is ex-
pressed simply as a linear function of the numbers
of each type of monomer, ni: Fu ) ∑aini. Using a set
of predetermined folding structures, the coefficients
ai are determined by minimizing an intensive func-
tional that is a function of Ef - Fu. For a four-letter
model, this functional is minimized across a set of
500 sequences of two-dimensional square lattice 16-
mers. The authors were able to identify foldable
sequences after an appropriate energy function had
been determined by variationally minimizing the
same function. Simplification of representing the free
energy of unfolded states greatly speeds the design
process.

Micheletti et al. compared several different design
methods using an HP model.184 The algorithms they
consider include the following: an algorithm similar
to that of Sun et al.,185 wherein assignment of H or
P depends on the number of local neighboring resi-

Ψ2(0) ) ∑
aa′

(naa′
f - 〈naa′〉u)uaa′ +

1

2
∑

aa′,bb′
uaa′〈(naa′nbb′〉u - 〈naa′〉u〈nbb′〉u)ubb′ (12)

) A·âu + 1
2

âu·B̂·âu (13)

âuopt ) -B̂-1·A (14)
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dues; minimizing an approximation to the free energy
difference between folded and unfolded states,176

wherein an effective chemical potential for H-type
residues was used to approximate Fu; and last, a
third method where Fu was replaced by a cost term
that maintains the approximately linear relationship
between chain length and number of contiguous
H-segments. Sequences and structures were obtained
from the protein structure database (PDB) and coarse
grained as either H or P. Success was measured as
the percentage of times an H or P was identified as
that observed in the “true sequence”. For each of the
methods the success rate is only in the range of 70-
75%. The authors suggest that this is due to the HP
coarse graning and confirm this with studies of
reduction of a four-letter to two-letter alphabet in a
square lattice model. For such an exactly solvable
system, only 72% of sequences maintain unique
ground states upon alphabet simplification and only
86% even if the energy parameters are re-optimized
after simplification.

Rossi et al. developed an iterative method to
determining folding sequences and tested it using a
the 27-mer lattice model of proteins.186 In this
method, the free energy of unfolded states is ap-
proximated by summing only over a set of compact
conformations. An optimal sequence is selected, and
its ground state is determined. If this conformation
is not the target, the structure is added to the set of
nonfolded conformations and the process is repeated.
The method imposes no composition constraint, and
the designability of particular structures was found
not to be dependent on the number of possible amino
acids. Although this method shows striking success
for lattice models, one drawback is that it re-
quires conformational minimization of intermediate
sequences, which is computationally intensive for
realistic models of proteins. Irbäck et al. surmounted
the usual nested Monte Carlo approach, wherein
configurational Monte Carlo simulations are per-
formed for each attempted sequence.187,188 In what
they term “multisequence” Monte Carlo, sequence
and conformational space are placed on equal footing
and sampled simultaneously. Sequences that are
observed more frequently in such a method are less
likely to have unique ground states and are pruned
from consideration in the course of design. The
authors compare this type of elimination of sequences
with elimination based on finding sequences with
ground-state energies other than the target structure.
The method is applied to HP representations of
lattices and to off-lattice models. The method is
efficient but limited to models having small size and
limited alphabets, since a set of sequences must be
maintained. The sampling scheme can be improved
by eliminating conserved sites, as obtained from trial
runs. The authors verify that the method is an
improvement upon design methods based upon mini-
mizing energy at constant composition or high-
temperature expansions.

Mirny et al. identified that selection for stable as
well as fast folding sequences can occur by maintain-
ing strong energetic interactions within a critical
substructure of a particular folded state.189 Many of

the remaining residues of the 48-mer lattice model
were less conserved, suggesting that in protein design
it may be possible for seemingly complex structures
to focus on optimizing the interactions among a
handful of key residues.

While most efforts involving design have focused
on specifying the global structure, some have con-
sidered just specifying the structure of a small subset
of amino acids. The global fold of the sequence is
unspecified, but the goal remains to find sequences
that fold to well-defined conformations that maintain
a desired structure of the subset. This mimics the
selection of sequences based upon function, e.g.,
maintaining local structure at an enzymatic active
site. Pande et al. presented similar ideas in their
lattice-based imprinting studies.190 Building upon
results from a spin-glass model of proteins,191 Yomo
et al. selected sequences according to function, which
was specified by selecting for sequences with a
predetermined spatial arrangement of four resi-
dues.165 The structure of the remaining residues in
their 47-mer off-lattice model of the engrailed homeo-
domain were not predetermined. Mutations were
accepted according to the usual importance sampling
based upon the structure of the “active site” only,
wherein the degree of convergence to the active site
configuration was determined using a molecular
dynamics simulation for each trial sequence. In
addition to maintaining the desired “active site”
structure, the sequences “evolved” to possess sub-
stantial helical content and compactness similar that
of the homodomain. This remaining structure pro-
vided a scaffold upon which to present the “active
site”. This is an example of a case where design can
be successful without complete specification of the
folded state structure.

E. Alphabet or Monomer Set
Nature uses the 20 naturally amino acids to build

protein structures. Synthetically, it is straightfor-
ward to use this same “alphabet” to create any
desired sequence or even to use a larger number of
artificial amino acids.192,193 A subset of the 20 amino
acids may also be considered in examining the effects
of alphabet simplification on protein design. Reducing
the number of amino acids reduces the number of
possible sequences. From a computational stand-
point, there is an additional subtlety concerning how
amino acids are distinguished. This can include gross
simplifications of the 20 amino acids by classifying
each into one of several groups based upon molec-
ular properties such as hydrophobicity or side-chain
size. The effective number of different types of
monomers may also be increased by associating
conformational states with each amino acid and
determining not only the amino acid identity but the
side-chain orientation of each amino acid for a given
backbone structure. This is a combinatorial problem
encountered in explicit side-chain-based algorithms
for protein design.52 Nonetheless, there is much
interest in simplifying the amino acid alphabet both
from a practical viewpoint of reducing the size of the
search space as well as from of a more fundamental
standpoint of understanding the minimal set of
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amino acids necessary to form particular structures
or any structure.

Experimental studies with reduced numbers of
amino acids have been recently reviewed,194,195 and
only some of them will be mentioned briefly here.
Early efforts in protein design examined positioning
hydrophobic and polar residues at positions in the
heptad repeat of an R-helix to form helical bundles,
primarily focusing on the positioning of leucine
residues in the interior and glutamate and lysine
residues at the exterior and interfacial positions.39,196,197

Kamtekar et al. suggest a binary patterning of amino
acids according to hydrophobicity, much akin to the
minimal protein models having just two types of
monomer.11 Using such a patterning for an R-helical
bundle, where hydrophobic residues reside on the
interior and hydrophilic ones on the exterior, these
authors identified a large fraction of sequences hav-
ing many protein-like properties. This was not,
however, a purely “two-letter” monomer alphabet,
since six different hydrophobic amino acids and five
different hydrophilic amino acids were possible.
Riddle et al. used combinatorial methods to reduce
the number of possible amino acids at 40 positions
in the src SH3 domain.198 Only five amino acids
representing a range of physicochemical properties
were allowed at these positions: I, K, E, A, and G.
Functional proteins were identified in which 38 of
these 40 positions had been mutated. From these
studies the authors infer that at least five, but not
three, types of amino acids are necessary to encode
sequences that fold to the SH3 structure. Schafmeis-
ter et al. used just seven different amino acids to
design a four-helix bundle.36 In this study, a reduced
amino acid set was used to create an entire protein.

Accompanying these experimental efforts are sev-
eral studies that address the number of amino acids
using theory and modeling. Studies of 27-mer lattice
and off-lattice models of proteins suggest that the
rapid folding capabilities of real proteins are better
recovered with models having three rather than two
amino acids.18 Shakhnovich found it difficult to find
low-energy structures in protein design using an HP
model.131 However, folding sequences can be found
when 20 amino acids are used for such models with
a Miyzawa-Jernigan-type contact potential.22 Wolynes
suggested that as the number of amino acids is
increased, it becomes more facile to arrive at funneled
energy landscapes.199 Homopolymers have essentially
a flat energy landscape, whereas proteins comprising
only a few amino acids may have many competing
minima. With increasing monomer complexity, it
becomes possible to select (via evolution) or tailor (via
design) sequences with good folding properties. By
noting correlations among the elements of the BLO-
SUM50 similarity matrix used for sequence align-
ments and developing appropriately reduced ma-
trixes, Murphy et al. found that approximately 10
different amino acid types are necessary to detect
homologues in a clustered database.200 In this study,
more than 600 folding families of structures were
considered. The authors suggest that the value of
approximately 10 different amino acids applies to
designing arbitrary structures but that a smaller

alphabet may be sufficient for particular structures.
Starting from a Miyazawa-Jernigan pair interaction
matrix,106 Wang and Wang reduced the 20-monomer
alphabet by minimizing mismatches between pairs.201

They were able to reduce this to a five-letter alpha-
bet, consistent with the findings of Riddle et al.198

Moreover, Wang and Wang use their reduction
scheme in combination with folding studies of a 27-
mer to examine how the average similarity (fraction
of native contacts, Q) varies with number of amino
acid types. This average similarity is small when only
two amino acids are used 〈Q〉 ≈ 0.35) but reaches 〈Q〉
≈ 0.9 for five different amino acid types. There is only
slight further improvement when 20 different amino
acids are used. By studying an off-lattice model
coupled with design via minimizing the energy at
constant composition, Liang found that four rather
than two amino acid types are necessary to design
sequences that fold to collapsed structures of a 16-
mer.202 Studying a two-dimensional lattice model,
Buchler and Goldstein found that the designability
of a structure is highly dependent upon the number
of amino acids that are used as well as on the
criterion used to determine foldability.203 Highly
designable structures for HP models were not the
most designable for larger alphabets. In determining
designability, these authors did find a strong cor-
relation between 20-letter Miyazawa-Jernigan-type
alphabets and an a model that permitted an arbi-
trarily large number of amino acids.

Taken together, these experimental and theoretical
studies suggest that some degree of simplification is
available in determining sequences that fold to a
desired structure. However, some diversity must be
maintained in order to identify sequences with suf-
ficiently smooth and biased energy landscapes. The
results suggest that different structures may require
different numbers of amino acids. As few as five
amino acids may suffice to construct structures such
as the SH3 domain,198 but more may be required for
larger or more structurally complex structures. The
ability to quantitatively understand such alphabet
simplification can only stand to accelerate progress
in protein design. In addition, expanding the alpha-
bet through the use of unnatural amino acids will
expand the tool kit for protein designers and enlarge
the number of “designable” structures (see also the
article by Cheng, Gellman, and DeGrado in this
issue204).

V. Statistical Approaches to Design

Despite some of the successes of the discussed
computational design methods, a variety of issues
hinder their use to probe the full range of allowed
sequences for particular structures. Methods based
on Monte Carlo sampling or genetic algorithms can
be applied to arbitrarily large proteins, but there is
no guarantee of convergence to an appropriate mini-
mum with respect to sequence. Indeed, in some cases,
designed sequences fold to structures other than the
target.126 Pruning methods such as “dead end elimi-
nation”51,53 can provide a more extensive search
among sequences, but these methods are restricted
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to scoring (energy) functions that involve only one-
and two-body interactions. There is increasing evi-
dence that the use of three-body and higher order
terms may be necessary to recover folding to unique
structures.134,157 With the pruning methods, it can be
difficult to include global constraints on sequence
such as the numbers of each amino acid, and calcu-
lating the energies of alternate compact, nontarget
conformations is computationally prohibitive. Prun-
ing methods are designed to determine the global
optimum, but many naturally occurring proteins are
marginally stable, so it would be useful to develop
methods to identify less than optimal sequences.
Because they rely on the explicit generation of
sequences, both stochastic search and pruning meth-
ods can only sample very small portions of sequence
space for realistic representations of proteins (ca. 100
residues and 20 amino acids). Both the atomistic and
the simplified approaches are sensitive to the energy
or scoring function used. All energy functions in use
for protein design are approximate, but the results
of any search algorithm depend sensitively on the
this energy function. This is not an issue in the
context of model systems, but for applications to real
proteins, uncertainties in the energy function may
not merit such detailed search algorithms. In arriving
at sequences that function, e.g., those that bind
another molecule, modifications of the sequence from
the optimum are likely to be necessary. Thus, it is
important to develop methods that can provide
information about suboptimal sequences for a given
structure and that can include arbitrary constraints
on sequences, such as those related to function or the
features of the energy landscape. Such computational
methods will also have application to a new class of
protein design studies, combinatorial experiments.

Protein combinatorial experiments, wherein librar-
ies of sequences are created and screened for evidence
of folding to a predetermined structure, provide a
means for broad-scale investigation of sequence vari-
ability. Recent developments in the use of combina-
torial methods for de novo protein design are dis-
cussed in the article by Moffet and Hecht.205 Such
combinatorial libraries are usually created using
recombinant methods, and molecules are selected for
“protein-like” properties, oftentimes using a binding
assay. Experiments of this type can explore a large
number of sequences, and their results can shed light
on the properties that foldable sequences in a library
share. Peptides with protein-like properties have
been isolated from random sequence libraries.206,207

Combinatorial surveys have also been used to iden-
tify a variety of sequences that are consistent with a
particular folded state structure.208-213 Hecht and co-
workers showed that a simple patterning of polar and
nonpolar residues consistent with a four-helix bundle
can yield sequences that are protein-like in being
compact and having significant secondary struc-
ture.209,214 These studies also reveal that dictating the
specific details of contacts between residues may not
be necessary for designing novel proteins. Axe et al.
found combinatorial mutants of barnase wherein
almost the entire hydrophobic core of the enzyme was
modified.213 As mentioned in the previous section,

using combinatorial experiments, folding sequences
have been found using a reduced set of amino
acids.198 The Baker group also studied other issues
in protein folding, including the evolutionary selec-
tion of protein stability vis a vis folding kinetics211

and the role of hydrophobic residues on the surface
of a protein.215 Ruan et al. found that for the pro
region of Subtilisin, the number of sequences with
maximal stability is small.210 Thus, combinatorial
experiments provide new routes to probe the deter-
minants and features of folding. The large numbers
of possible sequences, however, complicate these
types of experiments, and limitations must be placed
on the sequences so that the results are interpretable.
Such limitations are often guided by qualitative
chemical considerations, but a more quantitative
computational theory would helpful in designing and
interpreting these types of experiment.

Surveying the complete sequence landscape of
proteins and other chain molecules seems at first
glance intractable to both experiment and computa-
tion. Even a moderately sized protein of N ) 100
residues has more than 10130 possible sequences.
Recent studies using minimalist models, however,
have found that the number of sequences that fold
to a given structure is directly related to the degree
of difficulty in arriving at these sequences.158 Hence,
estimating the number of foldable sequences is an
important component of understanding the determi-
nants of folding. Much has been learned from na-
ture’s set of protein sequences, and surveying whole
libraries of folding sequences can reveal trends as to
what interactions stabilize particular structures. In
addition, many examples exist in nature of dissimilar
sequences folding to essentially the same structure.
Given these important issues, effort has been made
in developing a statistical theory of sequences com-
patible with a given structure.87-89 Such a theory will
be extremely useful for designing combinatorial
libraries of proteins, where huge numbers of se-
quences are possible. The theory of combinatorial
libraries for folding molecules addresses the large
numbers of possible sequences. The theory also
incorporates a molecular understanding of the inter-
actions involved in folding. This statistical approach
is complementary to search methods and provides a
different vantage on the sequence design problem.
The theory addresses the whole space of available
compositions, not just the small fractions that are
accessible to experiment and to computational enu-
meration and sampling. One of the main goals is to
aid protein chemists in discovering sequences that
fold to a desired protein architecture through the use
of appropriately designed combinatorial experiments.
The theory also provides an aerial view of the
“sequence landscape” and gives clues as to the
relative importance of the different intramolecular
interactions that stabilize particular three-dimen-
sional structures.

The statistical approach to characterizing protein
libraries addresses the number and composition of
sequences compatible with a particular folded protein
structure. Because of the exponential dependence on
the number of residues N, S is focused on instead,
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where S is the logarithm of the number of sequences
for a target structure. If the energy of the sequences
is fixed, S is equivalent to a microcanonical entropy,
the sequence entropy. As in statistical thermodynam-
ics, a maximum entropy approach is used where S
is maximized with respect to any unconstrained
internal parameters. Here the internal parameters
are the probabilities wi(R) that each residue position
i in a sequence is occupied by amino acid type R.

N is the chain length, and m is the number of possible
monomer types. S is maximized subject to constraints
on the sequences using the method of Lagrange
multipliers.124 The constraints need only be functions
of the monomer probabilities. The constraints may
specify values of global quantities that appear in the
energy landscape theory, such as the folded state
energy Ef or the stability gap ∆. “Patterning” con-
straints can also be included, where certain amino
acids are precluded from occupying particular sites,209

as well as composition constraints, where a specified
number of each type of monomer is used in making
the sequences in the library. For a given structure
and energy function, a set of coupled, self-consistent
equations is solved numerically to yield wi(R). In this
way, the number and composition of sequences hav-
ing particular values of Ef, ∆, or any other physical
or synthetic preconditions may be determined. Other
constraints may be easily included. Upon introducing
constraints, the number of different molecules in a
particular chemical ensemble decreases. This reduc-
tion in library size is due to a fundamental concept
in statistical thermodynamics: the imposition of any
internal constraints in a system decreases the overall
entropy. Thus, the theory may be used to design and
focus combinatorial experiments. For a given target
structure, the ramifications of such constraints on the
number and identities of allowed sequences can be
quickly investigated. For example, correlations be-
tween monomers can be examined by constraining
the identity of one position and examining how this
affects the identities of nearby residues. Being a form
of heterogeneneous mean-field theory, the computa-
tional time necessary for the method goes as Na,
where a ) 1-2. In contrast, the time required for
explicit tabulation is exponentially dependent on N.
Thus, the theory provides a tractable method of
characterizing and designing sequence ensembles of
proteins, where typically N ) 101-103.

The theory has been applied to an exactly solvable
system, a 27-mer cubic lattice polymer having only
two types of amino acid. The exact enumeration of
all 227 sequences is computationally facile.71,87 For a
“protein-like” energy function,71 the theory is in
excellent agreement with the exact results for both
S(Ef) and the sequence identity probabilities wi(R).
The theory may also be used to focus libraries on
regions having lower values of the target state energy
Ef by fixing the hydrophobicity of buried residues.
The theory may also be used to directly determine
the “designability” of a structure, since it provides

an estimate of the number of sequences as a function
of the energy.87 These methods have been extended
so that the distribution of the stability gap ∆ may
also be estimated. To specify ∆, the set of all 103 346
compact, cubic conformations was used as an en-
semble of nonfolded states.61 Using the theory, the
number and composition of sequences in a library as
functions of both Ef and ∆ may be examined. The
theory is in excellent agreement with the results of
the exact enumeration. The range and shape of the
sequence entropy are recovered quantitatively by the
theory. There is only a weak correlation between Ef
and ∆, in agreement with the notion that energy
minimization alone is likely to be insufficient for
sequence design, but these two quantities are strongly
correlated when the number of each amino acid is
constrained, in agreement with previous design
algorithms.136 The theoretical estimates for wi(R) are
also in excellent agreement with the exact results for
different values of Ef and ∆.88

In a recent study, this method has been extended
and applied to realistic representations of proteins,
which include the effects of side-chain packing in an
atom-based manner.89 The method has been applied
to calculate the sequence probabilities of the immu-
noglobulin light chain-binding domain of protein L.
This protein is an excellent target for the theory.
Twenty-one different backbone models consistent
with the NMR data are known. The different models
permit the backbone sensitivity of the results to be
examined. Combinatorial experiments on the protein
using phage display selection have provided many
variant folding sequences that bind to IgG.211,215 The
probabilities of amino acids have been calculated for
three different secondary structural subunits of
protein L and compared with experimentally ob-
served amino acid frequencies. The theory alleviates
the dependence of the amino state probabilities on
backbone structure observed in many atom-based
design algorithms.216 The method is sufficiently rapid
that many backbone structures may be considered
and those features that are robust with respect to
minor structure modifications may be identified. The
folded state energy E°c (or effective temperature T°c)
at which the generality of the results across different
similar backbone structures breaks down is identified
by a peak in an effective heat capacity Cv, which is
directly related to fluctuations in the energies of the
sequence-rotamer states. In the application to pro-
tein L, the probabilities for each amino acid in each
of three secondary structure elements are consistent
with the experimental studies, particularly with
regard to the placement of hydrophobic residues.
Although there is striking agreement between the
theoretical and observed amino acid probabilities in
some cases, precise quantitative agreement is not
obtained throughout, which may be due in part to
the sparse sampling of experimental sequences. The
theory provides an important first step in the devel-
opment of computational methods that address ar-
bitrary numbers of sequences. Furthermore, such a
theory should provide a useful framework to motivate
and design combinatorial experiments that provide
a larger sampling of possible sequences.

S ) -∑
i)1

N

∑
Ri)1

m

wi(Ri) ln wi(Ri) (15)
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VI. Concluding Remarks
As this special issue attests, the field of protein

design has substantially advanced in recent years
and has had some spectacular successes.32-35,40 While
many of these efforts were guided by atom-based
modeling about a fixed target backbone, energy
landscape ideas have proven powerful in the “labora-
tory” of simple protein models and are beginning to
have an impact in experimental protein design. These
ideas are particulary important in discussing the
stability of the target state in light of competing
nontarget structures. For example, Hill and DeGrado
indentified residues that are important for destabiliz-
ing nonfolded structures in a helical dimer.217 Explicit
consideration of both folded and unfolded states has
led to the successful design of totally nonbiological
folding polymers.204,218 The simplifications provided
by the energy landscape picture and verified using
simple models will also likely prove useful in the
design of larger proteins having 100 residues or more.

Understanding how sequence variation affects
foldability will become increasingly important as
more elements are included in the design process.
The experimental design of not only stable but fast
folding sequences is likely to see much progress,
especially in light of recent advances in understand-
ing how folding kinetics is reflected in a particular
native state structure.219-226 Predetermining which
residues are variable and which are conserved will
also be vital in the design of particular protein
functions such as metal binding,42 molecular recogni-
tion, and electron transfer,227 so that residues can be
identified whose variation will improve these proper-
ties without affecting the stability of a particular
structural scaffold. Given that sequence variation can
affect stability, kinetics, and function, it will be
important to develop unified pictures for real proteins
that treat each of these issues. Energy landscape-
based methods for identifying sequences and char-
acterizing the sequence space of a target structure
provide such a vehicle for doing so.
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(167) Mélin, R.; Li, H.; Wingreen, N. S.; Tang, C. J. Chem. Phys. 1999,

110, 1252.
(168) Anfinsen, C. B. Science 1973, 181, 223.
(169) Seno, F.; Vendruscolo, M.; Maritan, A.; Banavar, J. R. Phys. Rev.

Lett. 1996, 77, 1901.
(170) Micheletti, C.; Seno, F.; Maritan, A.; Banavar, J. R. Phys. Rev.

Lett. 1998, 80, 2237.
(171) Goldstein, R. A.; Luthey-Schulten, Z. A.; Wolynes, P. G. Proc.

Natl. Acad. Sci. U.S.A. 1992, 89, 4918.
(172) Socci, N. D.; Onuchic, J. N.; Wolynes, P. G. Proteins 1998, 32,

136.
(173) Goldstein, R. A.; Luthey-Schulten, Z.; Wolynes, P. G. Protein

Tertiary Structure Recognition Using Optimized Associative
Memory Hamiltonians. In 26th Hawaii International Conference
on System Sciences; T. N. Mudge, V. M., Hunter, L., Eds.; IEEE
Computer Society Press: Los Alamitos, CA, 1993; p 699-707.

(174) Shakhnovich, E.; Abkevich, V.; Ptitsyn, O. Nature 1996, 379,
96.

Designing Protein Energy Landscapes Chemical Reviews, 2001, Vol. 101, No. 10 3129



(175) Tiana, G.; Broglia, R. A.; Roman, H. E.; Vegezzi, E.; Shakhnovich,
E. J. Chem. Phys. 1998, 108, 757.

(176) Micheletti, C.; Banavar, J. R.; Maritan, A.; Seno, F. Phys. Rev.
Lett. 1998, 80, 5683.

(177) Deutsch, J. M.; Kurosky, T. Phys. Rev. Lett. 1996, 76, 323.
(178) Morrissey, M. P.; Shakhnovich, E. I. Folding Des. 1996, 1, 391.
(179) Onuchic, J. N.; Wolynes, P. G.; Luthey-Schulten, Z.; Socci, N.

D. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 3626.
(180) Rossi, A.; Micheletti, C.; Seno, F.; Maritan, A. Biophys. J. 2000,

80, 480.
(181) Abkevich, V. I.; Gutin, A. M.; Shakhnovich, E. I. Folding Des.

1996, 1, 221.
(182) Zhang, L.; Skolnick, J. Protein Sci. 1998, 7, 1201.
(183) Seno, F.; Micheletti, C.; Maritan, A.; Banavar, J. R. Phys. Rev.

Lett. 1998, 81, 2172.
(184) Micheletti, C.; Seno, F.; Maritan, A.; Banavar, J. R. Proteins

1998, 32, 80.
(185) Sun, S.; Brem, R.; Chan, H. S.; Dill, K. A. Protein Eng. 1995, 8,

1205.
(186) Rossi, A.; Maritan, A.; Micheletti, C. J. Chem. Phys. 2000, 112,

2050.
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